Automatic Control Theory

CSE 322

Lec. 4 Mathematical Modeling of Dynamic System

2. Mechanical Systems

Mechanical Systems

• Part-I: Translational Mechanical System

• Part-II: Rotational Mechanical System

• Part-III: Mechanical Linkages

2. Rotational Mechanical Systems

<section-header><section-header><section-header><text><equation-block><equation-block><equation-block><image>

<section-header><section-header><section-header><text><equation-block><equation-block><equation-block><equation-block>

Gear

• **Gear** is a toothed machine part, such as a wheel or cylinder, that meshes with another toothed part to transmit motion or to change speed or direction.

Fundamental Properties

The two gears **turn in opposite** directions: one clockwise and the other counterclockwise.

Two gears revolve at different speeds when number of teeth on each gear are **different**.

Gearing Up and Down

Gearing up is able to convert torque to velocity.

The more velocity gained, the more torque sacrifice.

The ratio is exactly the same: if you get three times your original angular velocity, you reduce the resulting torque to one third.

This conversion is symmetric: we can also convert velocity to torque at the same ratio.

The price of the conversion is power loss due to friction.

10

Why Gearing is necessary?

- A typical DC motor operates at speeds that are far too high to be useful, and at torques that are far too low.
- *Gear reduction* is the standard method by which a motor is made useful.

Gear Ratio

You can calculate the **gear ratio** by using the number of teeth of the *driver* divided by the number of teeth of the *follower*.

We gear up when we increase velocityand decrease torque.Follower

Ratio: 3:1

We *gear down* when we increase torque and reduce velocity.

Ratio= 1:3

Gear Ratio = # teeth input gear / # teeth output gear = torque in / torque out = speed out / speed in

Mathematical Modeling of Gear Trains

Gears increase or reduce angular velocity (while simultaneously decreasing or increasing torque, such that energy is conserved).

Energy of Driving Gear = Energy of Following Gear

 $N_1\theta_1 = N_2\theta_2$

14

3 to 1 ratio

1 turn

moves by

24 teeth

3 turns

moves by

24 teeth

Laminar vs Turbulent Flow

Laminar Flow

 Flow dominated by viscosity forces is called laminar flow and is characterized by a smooth, parallel line motion of the fluid

Turbulent Flow

When inertia forces dominate, the flow is called turbulent flow and is characterized by an irregular motion of the fluid.

Resistance in Laminar Flow

 For laminar flow, the relationship between the steadystate flow rate and steady state height at the restriction is given by:

 $Q = k_l H$

Where Q = steady-state liquid flow rate in m³/s
K_i = constant in m²/s
and H = steady-state height in m.

• The resistance $\mathbf{R}_{\mathbf{I}}$ is $R_{\mathbf{I}} = \frac{dH}{dO}$

Capacitance of Liquid-Level Systems

The capacitance of a tank is defined to be the change in quantity of stored liquid necessary to cause a unity change in the height.

 $RCsH(s) + H(s) = RQ_i(s)$

• The transfer function can be obtained as

 $\frac{H(s)}{Q_i(s)} = \frac{R}{(RCs+1)}$

Consider the liquid level system shown in following Figure. In this system, two tanks interact.
 Find transfer function Q₂(s)/Q(s).

• Tank 1
$$C_1 \frac{dh_1}{dt} = q - \frac{h_1 - h_2}{R_1}$$
 $q_1 = \frac{h_1 - h_2}{R_1}$ Pipe 1

• Tank 2
$$C_2 \frac{dh_2}{dt} = \frac{h_1 - h_2}{R_1} - \frac{h_2}{R_2}$$

$$q_2 = \frac{h_2}{R_2}$$
 Pipe 2

• Re-arranging above equation

$$C_1 \frac{dh_1}{dt} + \frac{h_1}{R_1} = q + \frac{h_2}{R_1}$$

$$C_2 \frac{dh_2}{dt} + \frac{h_2}{R_1} + \frac{h_2}{R_2} = \frac{h_1}{R_1}$$

$$Production for the equations considering initial conditions to crop [i.e. $h_A(d) = h_A(d) = h_A(d)$$$

$$\left(C_{1}s + \frac{1}{R_{1}}\right)H_{1}(s) = Q(s) + \frac{1}{R_{1}}H_{2}(s)$$
 (1)

$$\left(C_{2}s + \frac{1}{R_{1}} + \frac{1}{R_{2}}\right)H_{2}(s) = \frac{1}{R_{1}}H_{1}(s)$$
 (2)

• From Equation (1)

$$H_1(s) = \frac{R_1 Q(s) + H_2(s)}{R_1 C_1 s + 1}$$

• Substitute the expression of $H_1(s)$ into Equation (2), we get

$$\left(C_{2}s + \frac{1}{R_{1}} + \frac{1}{R_{2}}\right)H_{2}(s) = \frac{1}{R_{1}}\left(\frac{R_{1}Q(s) + H_{2}(s)}{R_{1}C_{1}s + 1}\right)$$

$$\begin{array}{l}
\textbf{Modelling Example - 2} \\
\left(C_{2}s + \frac{1}{R_{1}} + \frac{1}{R_{2}} \right) H_{2}(s) = \frac{1}{R_{1}} \left(\frac{R_{1}Q(s) + H_{2}(s)}{R_{1}C_{1}s + 1} \right) \\
\textbf{or using } H_{2}(s) = R_{2}Q_{2}(s) \text{ in the above equation} \\
\left[\left(R_{2}C_{2}s + 1 \right) \left(R_{1}C_{1}s + 1 \right) + R_{2}C_{1}s \right] Q_{2}(s) = Q(s) \\
\frac{Q_{2}(s)}{Q(s)} = \frac{1}{R_{2}C_{1}R_{1}C_{2}s^{2} + \left(R_{1}C_{1} + R_{2}C_{2} + R_{2}C_{1} \right)s + 1} \\
\end{array}$$

