Automatic Control Theory
CSE 322

Lec. /
Time Domain Analysis
(2" Order Systems)

Introduction

* We have already discussed the affect of location of pole and zero on the
transient response of 1%t order systems.

e Compared to the simplicity of a first-order system, a second-order system
exhibits a wide range of responses that must be analyzed and described.

e Varying a first-order system's parameters (T, K) simply changes the speed
and offset of the response

e Whereas, changes in the parameters of a second-order system can
change the form of the response.

* A second-order system can display characteristics much like a first-order
system or, depending on component values, display damped or pure
oscillations for its transient response.




Introduction

e A general second-order system (without zeros) is
characterized by the following transfer function.
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Z ——> damping ratio of the second order system, which is a measure
of the degree of resistance to change in the system output.

G, ——> un-damped natural frequency of the second order system,
which is the frequency of oscillation of the system without
damping.




Example -1

 Determine the un-damped natural frequency and damping ratio
of the following second order system.

e Compare the numerator and denominator of the given transfer
function with the general 2" order transfer function.

W =4 =a,=2rad/sec

= 2{,S=2s
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* The closed-loop poles of the system are
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Introduction
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* Depending upon the value of , a second-order system can be set
into one of the four categories:

1. Overdamped - when the system has two real distinct poles (. >1).
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* According the value of { , a second-order system can be set into
one of the four categories:

2. Underdamped :- when the system has two complex
conjugate poles (0 <.<1)
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Introduction
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* According the value of . , @ second-order system can be set into
one of the four categories:

3. Undamped - when the system has two imaginary poles (. =0).

jw
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—wh + w7 -1
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e According the value of . , a second-order system can be set into
one of the four categories:

4. Critically damped - when the system has two real but equal poles .= 1).
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Time-Domain Specification

For 0<{ <1 and w, > 0, the 2" order system’s response due to a
unit step input looks like ( underdamped )
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Time-Domain Specification

* The delay (t,) time is the time required for the response to
reach half the final value the very first time.
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Time-Domain Specification

* The rise time (tr) is the time required for the response to rise
from 10% to 90%, 5% to 95%, or 0% to 100% of its final value.

* For underdamped second order systems, the 0% to 100% rise
time is normally used. For overdamped systems, the 10% to
90% rise time is commonly used.
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Time-Domain Specification

* The peak time (tp) is the time required for the response to
reach the first peak of the overshoot.
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Time-Domain Specification

The maximum overshoot ( Mp ) is the maximum peak value of
the response curve measured from unity. If the final steady-
state value of the response differs from unity, then it is common
to use the maximum percent overshoot. It is defined by

. e(t,) — e(oo)
Maximum percent overshoot = x 100%
c(o0)

The amount of the maximum (percent) overshoot directly
indicates the relative stability of the system.
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Time-Domain Specification

e The settling time (ts) is the time required for the response
curve to reach and stay within a range about the final value of
size specified by absolute percentage of the final value
(usually 2% or 5%).
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Time Domain Specifications

Rise Time Peak Time

m—-6  m-6 i = n

t, = p

o wp1-¢° “ o w1-¢7

Settling Time (2%)

4
ts =47 =—— Maximum Overshoot
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_ K
2
(=37 =—— M, =e V¢ x100
§t,

Settling Time (5%)

Time-Domain Specification

Effects of damping
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£ =1.0 (Critically damped)
L =1.5 (Overdamped)
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S-Plane
e Natural Undamped Frequency.

jw
e Distance from the origin of
s-plane to pole is natural
undamped frequency in Cn
rad/sec.

S-Plane

* Let us draw a circle of radius 3 in s-plane.

* If a pole is located anywhere on the circumference of the circle the
natural undamped frequency would be 3 rad/sec.

NA




S-Plane

* Therefore the s-plane is divided into Constant Natural
Undamped Frequency (w,) Circles.

S-Plane

 Damping ratio.

e Cosine of the angle between jw
vector connecting origin and
pole and —ve real axis yields
damping ratio.

{ =cosb




S-Plane
* For Underdamped system _ therefore, 0<{ <1

jw

S-Plane
e For Undamped system- therefore, { =0
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S-Plane

e For overdamped and critically damped systems -

therefore, ¢ =1

jw

S-Plane

e Draw a vector connecting origin of s-plane and some point P.

45°

jw

{ =cos45’ =0.707




S-Plane

* Therefore, s-plane is divided into sections of constant damping
ratio lines.

jw

Example-2

* The natural frequency of closed -
loop poles of 2" order system is 2 °" o5 oam om0l oos g

rad/sec and damping ratio is 0.5. R
) e 15
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* Determine the location of closed * .,

loop poles so that the damping -~~~
ratio remains same but the natural |
0:04 . :
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Example-2

* Determine the location of closed loop poles so that the damping ratio
remains same but the natural undamped frequency is doubled.
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Step Response of underdamped System

C(s) _ wr? Step Response f‘( ) — a)r?
R(s) s*+20w,s+af (S +2{w, s+a)2)

* The partial fraction expansion of above equation is given as

Cls) = s+ 2{a,
s s? +2{w, s+w
a)(l Z
C(s)==- S+22520 j
(s+2(a) 52 +2Za) s+{ W Z W
C(s _1_ S+ 2{w,

s (S+Zw F+apl-?)

Step Response of underdamped System

C(s) _1 S+ 2¢a

s (s+¢w ) +apl-7?)

* Above equation can be written as

1 s+2{w
cle=1- Seh
S (S+Z“n) + Gy

e Where wy =w,y1-¢? , is the frequency of transient oscillations
and is called damped natural frequency.

* The inverse Laplace transform of above equation can be obtained
easily if C(s) is written in the following form:

ST it YN

S (s+lewn ) +ah (s+dw ) +af




Step Response of underdamped System

o=t St
S (s+¢w,f+af (s+lw,)f +af
Z za)n 1_(2

cls) =1 - S+Z‘2‘)n 1- .
S (s+dw,)+ad  (s+lw,f +ad
Cls)=1- S+ ¢ Y

Step Response of underdamped System

c(t) =1- e “! cos ayt - ¢ e gin wyt
1-72
c(t) =1-e ™" cos ayt + ¢ sin wjyt
1-7?
e When ¢ =0
_ 2
Wy = wh\1-¢

= e,

c(t) =1-coswyt




Step Response of underdamped System

c(t) =1-e“!| cos wyt +

sin a)dt]
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Step Response of underdamped System

c(t) =1-e ™" cos ayt + sin cyt
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Step Response of underdamped System

if {=0.9

ct) =1-e %%
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1-7?

and «, =3 rad/sec

Step Response of underdamped System
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Step Response of underdamped System
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Time Domain Specifications of
Underdamped system
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Summary of Time Domain Specifications

Rise Time Peak Time

-6 _ m-0 i = n
W _ 72 "W w1-C*
d w1-¢

tr

Settling Time (2%)

4
ts =41 =—— Maximum Overshoot
{aw,
_ K
(=37 =—— M, =e ¢ x100
{ @,

Settling Time (5%)

Example -3

e Consider the system shown in following figure, where
damping ratio is 0.6 and natural undamped frequency is 5
rad/sec. Obtain the rise time t, peak time t,, maximum
overshoot M, and settling time 2% and 5% criterion t; when
the system is subjected to a unit-step input.

R(s) E(s) . C(s)
n »‘
8 S(s + 24w,)

|




Rise Time
T—0

t, =
Wy

Settling Time (2%)

Example-3

Peak Time
7T

ty = —
Wy

Maximum Overshoot

4 /14
t.=4T=— -
) M, =e ¢ x100
(=37 =——
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Settling Time (5%)
Example -3
Rise Time
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d ﬁw J @
T2
31410 ‘“ﬂ\1+ { i/«g
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Example -3

Peak Time Settling Time (2%)
4
t, = =4l ls=—5—
a)d a)n
3.141 to=—— =133
tp ==, — =0.785s ° 06x5 T
Settling Time (5%)
3
tg = —
§t,
3
t, = =1s
0.6x5
Example -3
Maximum Overshoot
_ g
2
M, =e V™" x100
_3.141x0.6

M, =e V106 x100
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Example -3

Step Response
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Example -4

For the system shown in Figure-(a), determine the values of gain K
and velocity-feedback constant K, so that the maximum overshoot
in the unit-step response is 0.2 and the peak time is 1 sec. With
these values of K and K,, obtain the rise time and settling time.

Assume that J=1 kg-m? and B=1 N-m/rad/sec.

R(s) 0:‘ @
A

|

C(s)




Example -4

R(s) C(s)
D 545 T s -

L K,
R(s) K C(s)
s(Js + B+ KK),) -

I

C(s) _ K
R(s) Js*+ (B + KK,)s + K

Example -4

C(s) _ K
R(s) Js*+ (B + KK,)s + K

Since J =1kgm? and B =1Nm/rad/sec
C(s) _ K
R(s) s?2+(1+KK,)s+K

* Comparing above T.F with general 2" order T.F

C(s) _ ot
R(s) s*+20w,s+af
b =JK 7= (1+KK},)

2K




Example -4

_(A+KK)
@ =K P
* Maximum overshoot is 0.2. * The peak time is 1 sec
M. = ¢ N1 t, = 7
P wd
€_(§/V 1-P)r _ 0.2 1= 3.141

s i w\1-°
In(e ‘/?) = 1n(0.2)

_ 314
1577 - 161 " J1-0.4562
V1-—-{¢
@, =3.53
{ = 0.456
Example -4
[ = 0.456 Gy =3.93
(1+KK},)
o =K - L+ KK,
‘ 2JK
3.53=+K 0.456x 24/12.5 = (1+12.5K,,)
353% =K K, =0.178

K =125




Example -4

[ = 0456 G, =3.53
- 4
(= -6 t,=——
1= 2 {w,
t, =0.65s t, = 2.48s
tS = i
{aw,
t, =1.86s
Example -4

*Repeat part (a) without the velocity feedback.

*What is your observations ?

R(s) K 1
s+ > &

C(s)

-




Further Reading

Time Domain Specifications (Rise Time)

{
1-72

c(t) =1- e_m{cos wyt + sin a)dt}

Put t=t, inabove equation

J
1-7°2

c(t,) =1~ e <4l | cos wyt, +

sin a)dtr]

Where c(t,) =1

0= —e <@l [cos wyt, +

—e @t 20 0= [cos wyt, +——e




Time Domain Specifications (Rise Time)

Sln C()d

cos wyt, +
vi- Z

above equation can be re - writen as

F

Sln de COS de

1-7°2
{

52
wyt, :tan_l[— 1-¢ ]
4

tan wyt, = —

Time Domain Specifications (Rise Time)

jo &
t =tan Y - 1-¢° :
wWyl, =tan 7 ﬂ‘““ Jwy
5 10y,
wn\"'l - ( :
1 W RTL
t, =—tan 1(— n } —g 0
Wy Wh¢
_"“ van —=
T—0
tr = —

Base b}

(&) derpuadag




Time Domain Specifications (Peak Time)

c(t) =1-e " cos ayt +

¢ sin wjyt
J1-772

* In order to find peak time let us differentiate above equation w.r.t t.

. - > a)
dC(t)__Z e {cosadt+ 4 SHladt‘_e &%w__adsnladt+ oy cosadt‘

dt 1_Z2 /1_52

2
a, . . ),
¢ G sin wyt + @y sin wyt — L

1-7? J1-72

O:ez“’"{Z%swdH e sin wyt + wy sina)dt—zw “; /osa)d
1-¢ \/1/53/

0=e ™™ Za, cosawyt + cos awyt

N

Time Domain Specifications (Peak Time)

o wyt + W, sina)t—zw““l; Z7cosa)t
JI:EESHl(j d d V@Z??V d

2
- 4] . .
e Z%t! ¢ G sin wyt + @y sin a)dt] =0

0= e_Za’”{Za) cos wyt +

sin wyt + w, sin a)dt] =0




Time Domain Specifications (Peak Time)

sinayt =0

tyt =sin 0

1= 07027, -
Wy
* Since for underdamped stable systems first peak is maximum peak
therefore, T
'[p =-_
Wy

— 1 _ oSt
C(tp)—l e’ "Pleosayt, +

sin awyt,
1-7?
c(e0) =1

M, = /—e_m‘tp cosayt, +

b %sin Wyt —/ x100

1-¢
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Put t, =—inaboveequation
wd
—anwl T 4 : T
M,=|-e 91 cosay + sin wWy — | [ %100

C()d l_Zz a)d




Time Domain Specifications (Maximum Overshoot)

(o /
M,=|-e “ 1 cosay ,/T+ ¢ sina)dl x100
wd 1_(2 a)d
Put w4 = w,y1:¢? inabove equation
_Z% l 2 Z
M,=|-€ NI oog T+ ——2—sin 77| | *x 100
V1-72
_
M, =|-e V¢ (~1+0)|x100
_
52
M, =e V" x100

Time Domain Specifications (Settling Time)

c(t) =1-e“!| cosawyt + sin wyt

1-7?2
c(?)

Exponential decay generated by
real part of complex pole pair

—w,{ Ha -1

Real Part Imaginary Part

——

Sinusoidal oscillation generated by
imaginary part of complex pole pair

—-




Time Domain Specifications (Settling Time)

o Settling time (2%) criterion
* Time consumed in exponential decay up to 98% of the input.

c(?)

Exponential decay generated by
real part of complex pole pair

t :4T:_ = 1
> Ja, ",

Sinusoidal oscillation generated by
imaginary part of complex pole pair

>

e Settling time (5%) criterion
* Time consumed in exponential decay up to 95% of the input.

=ar=_2
{ @,

Step Response of critically damped System
(¢=1)

C(s) _ C‘)ﬁ Step Response _ aﬁ
e %y

* The partial fraction expansion of above equation is given as

W A B C
=—+ +

ss+a) s stan (s+aw)

1w,
stan (s+a,)

Cle)=2-
s
ct) =1-e ' —w e 't

ct) =1-e 1+ wit)




System Pole-zero Plot Response
G(s)
R(s) = 35 b C(s)
(a) . >
s<+as+ b
General
. c(f) c() =1+ 0.171e 78547 —
w
7 14 1.171e 1-146¢
G(s)
1
) R(s) = 31 [+ C(s)
2
sttos +9 —7.854 —1.146 0.5 -
Owverdamped
1 1 1 1 1 ¢
(0] 1 2 3 4 5
c(®) c(r) = 1 —e Y(cos8z +"§ sin+ 8 1)
G 1.a% = 1 —1.06e " cos(x8r—19.477)
1.2
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) R(s) — 5 Q C(s) 0.8
<
s2+ 25+ 9 1 o 0.6
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1 1 1 I 1
(o] 1 2 3 4 5 ‘
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Jw 2Jl c(r) — 1 —cos 3¢
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1
@ R =5 ° ) i 1l
s2+9 —i3
Undamped
1 1 1
o 1 2 3 4 s ‘
c(r)
S 4 Y1 3ge 3t Y
. G(s) s-plane 1 c(t) — — 3fe — e
Ri(s) =35 9 C(s) 0.8
(e 25 65+ O 0.6
5 5 -
£ o oal
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