Automatic Control Theory

CSE 322

Lec. 5 Signal Flow Graph

Quiz (10 mins)

Find the transfer function of the following block diagrams

3. Eliminate loop II & IIII

Outline

- Introduction to Signal Flow Graphs
 - Definitions
 - Terminologies
 - Examples
- Mason's Gain Formula
 - Examples

- Signal Flow Graph from Block Diagrams
- Design Examples

Introduction

- Alternative method to block diagram representation, developed by Samuel Jefferson Mason.
- A signal-flow graph consists of a network in which nodes are connected by directed branches.
- ➤ It depicts the flow of signals from one point of a system to another and gives the relationships among the signals.

Fundamentals of Signal Flow Graphs

• Consider a simple equation below and draw its signal flow graph:

$$y = ax$$

• The signal flow graph of the equation is shown below;

 $x \bullet y$

- Every variable in a signal flow graph is designed by a **Node**.
- Every transmission function in a signal flow graph is designed by a **Branch**.
- Branches are always unidirectional.
- The arrow in the branch denotes the **direction** of the signal flow.

Signal-Flow Graph Models

$$Y_1(s) = G_{11}(s) \cdot R_1(s) + G_{12}(s) \cdot R_2(s)$$

$$Y_2(s) = G_{21}(s) \cdot R_1(s) + G_{22}(s) \cdot R_2(s)$$

Signal-Flow Graph Models

 r_1 and r_2 are inputs and X_1 and X_2 are outputs

 $a_{11} \cdot x_1 + a_{12} \cdot x_2 + r_1 = x_1$

 $a_{21} \cdot x_1 + a_{22} \cdot x_2 + r_2 = x_2$

Signal-Flow Graph Models

 X_o is input and X_4 is output

9

10

Terminologies

- An input node or source contain only the outgoing branches. i.e., X_1
- An output node or sink contain only the incoming branches. i.e., X₄
- A **path** is a continuous, unidirectional succession of branches along which no node is passed more than ones. i.e.,

X_1 to X_2 to X_3 to X_4 X_1 to X_2 to X_4 X_2 to X_3 to X_4

- A forward path is a path from the input node to the output node. i.e., X_1 to X_2 to X_3 to X_4 , and X_1 to X_2 to X_4 , are forward paths.
- A feedback path or feedback loop is a path which originates and terminates on the same node. i.e.; X_2 to X_3 and back to X_2 is a feedback path.

Terminologies

- A self-loop is a feedback loop consisting of a single branch. i.e.; A₃₃ is a self loop.
- The gain of a branch is the transmission function of that branch.
- The path gain is the product of branch gains encountered in traversing a path. i.e. the gain of forwards path X_1 to X_2 to X_3 to X_4 is $A_{21}A_{32}A_{43}$
- The loop gain is the product of the branch gains of the loop. i.e., the loop gain of the feedback loop from χ_2 to χ_3 and back to χ_2 is $A_{32}A_{23}$
- Two loops, paths, or loop and a path are said to be non-touching if they have no nodes in common. A_{42}

Consider the signal flow graph below and identify the following

- a) Input node.
- b) Output node.
- c) Forward paths.
- d) Feedback paths (loops).
- e) Determine the loop gains of the feedback loops.
- f) Determine the path gains of the forward paths.
- g) Non-touching loops

Consider the signal flow graph below and identify the following

• There are four loops

Mason's Rule (Mason, 1953)

- The block diagram reduction technique requires successive application of fundamental relationships in order to arrive at the system transfer function.
- On the other hand, Mason's rule for reducing a signal-flow graph to a single transfer function requires the application of one formula.
- The formula was derived by S. J. Mason when he related the signal-flow graph to the simultaneous equations that can be written from the graph.

Mason's Rule:

• The transfer function, *C(s)/R(s)*, of a system represented by a signal-flow graph is;

 $\frac{C(s)}{R(s)} = \frac{\sum_{i=1}^{n} P_i \Delta_i}{\Delta}$

Where:

n = number of forward paths.

 P_i = the **i**th forward-path gain.

 Δ = Determinant of the system

 Δ_{i} = Determinant of the **i**th forward path

 Δ is called the signal flow graph determinant or **characteristic** function. Since Δ =0 is the system characteristic equation.

17

Mason's Rule:

$$\frac{C(s)}{R(s)} = \frac{\sum_{i=1}^{n} P_i \Delta_i}{\Delta}$$

 $\Delta = 1$ - (sum of all individual loop gains) + (sum of the products of the gains of all possible two loops that do not touch each other) – (sum of the products of the gains of all possible three loops that do not touch each other) + ... and so forth with sums of higher number of non-touching loop gains

 Δ_{i} = value of Δ for the part of the block diagram that does not touch the i-th forward path (Δ_{i} = 1 if there are **no non-touching** loops to the i-th path.)

Systematic approach

- 1. Calculate forward path gain P_i for each forward path i
- 2. Calculate all loop transfer functions
- 3. Consider non-touching loops 2 at a time
- 4. Consider non-touching loops 3 at a time
- 5. etc
- 6. Calculate Δ from steps 2,3,4 and 5
- 7. Calculate Δ_i as portion of Δ not touching forward path *i*

19

Example-1: Apply Mason's Rule to calculate the transfer function of the system represented by following Signal Flow Graph

 $L_1 = G_1 G_4 H_1, \quad L_2 = -G_1 G_2 G_4 H_2, \quad L_3 = -G_1 G_3 G_4 H_2$

Example-1: Apply Mason's Rule to calculate the transfer function of the system represented by following Signal Flow Graph G_3

There are no non-touching loops, therefore

 $\Delta = 1$ - (sum of all individual loop gains)

 $\Delta = 1 - (L_1 + L_2 + L_3)$

$$\Delta = 1 - (G_1 G_4 H_1 - G_1 G_2 G_4 H_2 - G_1 G_3 G_4 H_2)$$

Example-1: Apply Mason's Rule to calculate the transfer function of the system represented by following Signal Flow Graph

Eliminate forward path-1

 $\Delta_1 = 1$ - (sum of all individual loop gains)+... $\Delta_1 = 1$

Eliminate forward path-2

$$\Delta_2 = 1$$
- (sum of all individual loop gains)+...
 $\Delta_2 = 1$

Example-1: Continue

$$\frac{C}{R} = \frac{P_1 \Delta_1 + P_2 \Delta_2}{\Delta} = \frac{G_1 G_2 G_4 + G_1 G_3 G_4}{1 - G_1 G_4 H_1 + G_1 G_2 G_4 H_2 + G_1 G_3 G_4 H_2}$$
$$G_1 G_4 (G_2 + G_3)$$

 $= \frac{1}{1 - G_1 G_4 H_1 + G_1 G_2 G_4 H_2 + G_1 G_3 G_4 H_2}$

Example-2: Apply Mason's Rule to calculate the transfer function of the system represented by following Signal

- 1. Calculate forward path gains for each forward path.
- 2. Calculate all loop gains.

Example -2: continue

3. Consider two non-touching loops.

- 4. Consider three non-touching loops. None.
- 5. Calculate Δ from steps 2,3,4.

$$\Delta = 1 - (L_1 + L_2 + L_3 + L_4) + (L_1L_3 + L_1L_4 + L_2L_3 + L_2L_4)$$

$$\Delta = 1 - (G_2 H_2 + H_3 G_3 + G_6 H_6 + G_7 H_7) + (G_2 H_2 G_6 H_6 + G_2 H_2 G_7 H_7 + H_3 G_3 G_6 H_6 + H_3 G_3 G_7 H_7)$$

25

Example -2: continue

Eliminate forward path-1

$$\Delta_1 = 1 - (L_3 + L_4)$$

$$\Delta_1 = 1 - (G_6 H_6 + G_7 H_7)$$

Eliminate forward path-2

$$\Delta_2 = 1 - (L_1 + L_2)$$

$$\Delta_2 = 1 - (G_2 H_2 + G_3 H_3)$$

Example -2: continue

• Find the transfer function, C(s)/R(s), for the signal-flow graph in figure below.

Example#3

• There is only one forward Path.

 $P_1 = G_1(s)G_2(s)G_3(s)G_4(s)G_5(s)$

29

Example#3

• There are four feedback loops.

Example#3

• Non-touching loops taken two at a time.

L1 and L2: $G_2(s)H_1(s)G_4(s)H_2(s)$ L2 and L3: $G_4(s)H_2(s)G_7(s)H_4(s)$ L1 and L3: $G_2(s)H_1(s)G_7(s)H_4(s)$

31

Example#3

• Non-touching loops taken three at a time.

L1, L2, L3: $G_2(s)H_1(s)G_4(s)H_2(s)G_7(s)H_4(s)$

Example#3

$$\begin{split} \Delta &= 1 - [G_2(s)H_1(s) + G_4(s)H_2(s) \\ &+ G_7(s)H_4(s) + G_2(s)G_3(s)G_4(s)G_5(s)G_6(s)G_7(s)G_8(s)] \\ &+ [G_2(s)H_1(s)G_4(s)H_2(s) + G_2(s)H_1(s)G_7(s)H_4(s) \\ &+ G_4(s)H_2(s)G_7(s)H_4(s)] \\ &- [G_2(s)H_1(s)G_4(s)H_2(s)G_7(s)H_4(s)] \end{split}$$

From Block Diagram to Signal-Flow Graph Models

Example 5:

