Automatic Control Theory CSE 322

Lec. 6 Time Domain Analysis (1st Order Systems)

Introduction

- In time-domain analysis the response of a dynamic system to an input is expressed as a function of time.
- It is possible to compute the time response of a system if the nature of input and the mathematical model of the system are known.
- Usually, the input signals to control systems are not known fully ahead of time.
- For example, in a radar tracking system, the position and the speed of the target to be tracked may vary in a random fashion.
- It is therefore difficult to express the actual input signals mathematically by simple equations.

Standard Test Signals

- The characteristics of actual input signals are a sudden shock, a sudden change, a constant velocity, and constant acceleration.
- The dynamic behavior of a system is therefore judged and compared under application of standard test signals – an impulse, a step, a constant velocity, and constant acceleration.
- Another standard signal of great importance is a sinusoidal signal.

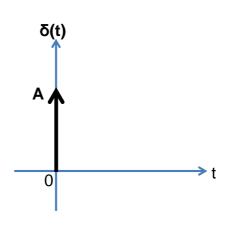
Standard Test Signals

Impulse signal

The impulse signal imitate the sudden shock characteristic of actual input signal.

$$\delta(t) = \begin{cases} A & t = 0\\ 0 & t \neq 0 \end{cases}$$

If A=1, the impulse signal is called unit impulse signal.



Standard Test Signals

u(t)

Α

0

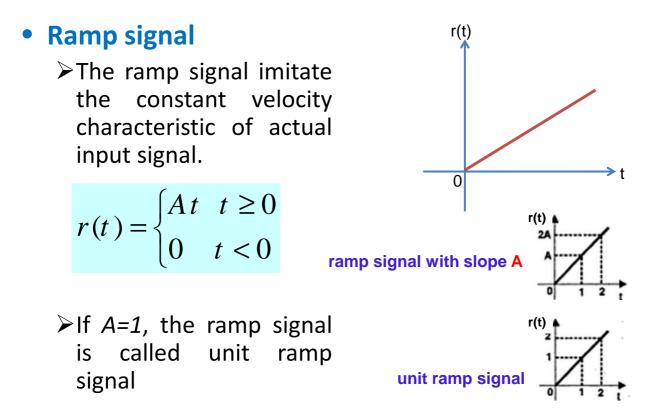
≯t

• Step signal

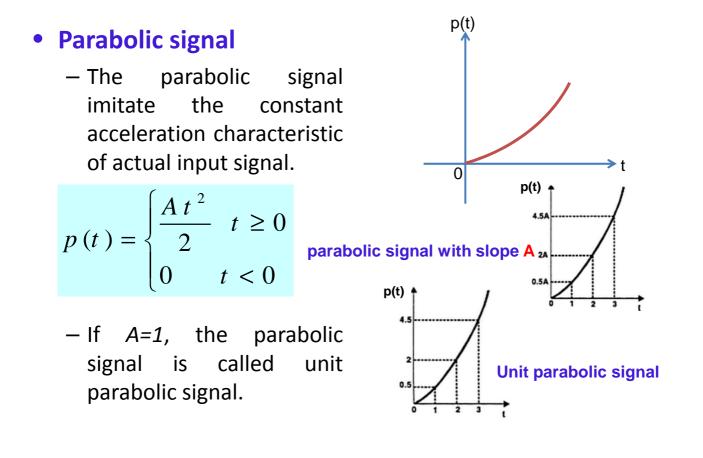
The step signal imitate the sudden change characteristic of actual input signal.

$$u(t) = \begin{cases} A & t \ge 0\\ 0 & t < 0 \end{cases}$$

If A=1, the step signal is called unit step signal



Standard Test Signals



Relation between standard Test Signals

 Impulse 	ſ	$\delta(t) = \begin{cases} A \\ 0 \end{cases}$	$t = 0$ $t \neq 0$	$\int \frac{d}{dt}$
• Step		$u(t) = \begin{cases} A\\ 0 \end{cases}$	$t \ge 0$ $t < 0$	$\int \frac{d}{dt}$
• Ramp		$r(t) = \begin{cases} At\\ 0 \end{cases}$	$t \ge 0$ $t < 0$	
Parabolic	\int	$p(t) = \begin{cases} \frac{At^2}{2} \\ 0 \end{cases}$	$t \ge 0$ $t < 0$	dt

Laplace Transform of Test Signals

• Impulse $\delta(t) = \begin{cases} A & t = 0\\ 0 & t \neq 0 \end{cases}$ $L\{\delta(t)\} = \delta(s) = A$ • Step $u(t) = \begin{cases} A & t \ge 0\\ 0 & t < 0 \end{cases}$ $L\{u(t)\} = U(s) = \frac{A}{s}$

Laplace Transform of Test Signals

• Ramp $r(t) = \begin{cases} At & t \ge 0\\ 0 & t < 0 \end{cases}$

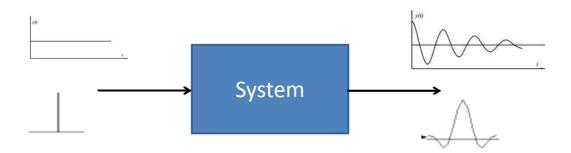
$$L\{r(t)\} = R(s) = \frac{A}{s^2}$$

Parabolic

$$p(t) = \begin{cases} \frac{At^2}{2} & t \ge 0\\ 0 & t < 0 \end{cases}$$
$$L\{p(t)\} = P(s) = \frac{2A}{S^3}$$

Time Response of Control Systems

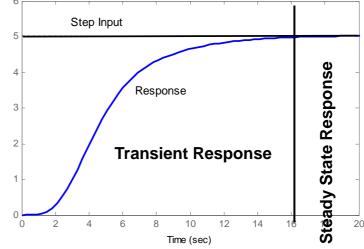
• Time response of a dynamic system response to an input expressed as a function of time.



- The time response of any system has two components
 - Transient response
 - Steady-state response.

Time Response of Control Systems

- When the response of the system is changed form rest or equilibrium it takes some time to settle down.
 - **Transient response** is the response of a system from rest or equilibrium to steady state.
- The response of the system after the transient response is called **steady state** response.



Time Response of Control Systems

- Transient response depend upon the system **poles** only and not on the type of input.
- It is therefore sufficient to analyze the transient response using a step input.
- The steady-state response depends on system dynamics and the input quantity.
- It is then examined using different test signals by final value theorem.

Introduction

• The first order system has only one pole.

$$\frac{C(s)}{R(s)} = \frac{K}{Ts+1}$$

- Where *K* is the D.C gain and *T* is the time constant of the system.
- Time constant is a measure of how quickly a 1st order system responds to a unit step input.
- D.C Gain of the system is ratio between the input signal and the steady state value of output.

Introduction

• The first order system given below.

$$G(s) = \frac{10}{3s+1}$$

- D.C gain is 10 and time constant is 3 seconds.
- And for following system

$$G(s) = \frac{3}{s+5} = \frac{3/5}{1/5s+1}$$

 D.C Gain of the system is 3/5 and time constant is 1/5 seconds.

Impulse Response of 1st Order System

• Consider the following 1st order system

$$R(s) \longrightarrow K$$

$$R(s) \longrightarrow C(s)$$

$$R(s) = \delta(s) = 1$$

$$C(s) = \frac{1}{Ts+1}$$

Impulse Response of 1st Order System

$$C(s) = \frac{K}{Ts+1}$$

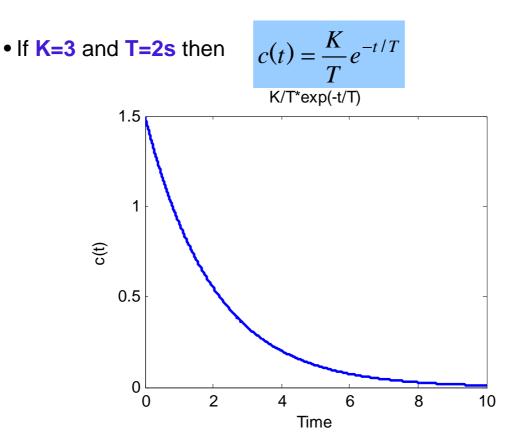
Re-arrange following equation as

$$C(s) = \frac{K/T}{s+1/T}$$

 In order represent the response of the system in time domain we need to compute inverse Laplace transform of the above equation.

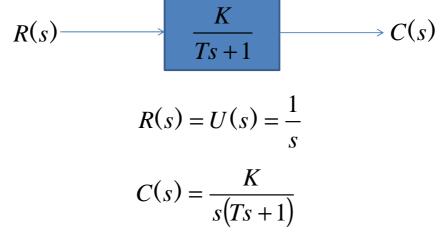
$$L^{-1}\left(\frac{C}{s+a}\right) = Ce^{-at} \qquad c(t) = \frac{K}{T}e^{-t/T}$$

Impulse Response of 1st Order System



Step Response of 1st Order System

• Consider the following 1st order system



 In order to find out the inverse Laplace of the above equation, we need to break it into partial fraction expansion

Forced Response
$$C(s) = \frac{K}{S} + \frac{KT}{Ts+1}$$
 Natural Response

Step Response of 1st Order System

$$C(s) = K \left(\frac{1}{s} - \frac{T}{Ts+1} \right)$$

Taking Inverse Laplace of above equation

$$c(t) = K\left(u(t) - e^{-t/T}\right)$$

• Where u(t)=1

$$c(t) = K\left(1 - e^{-t/T}\right)$$

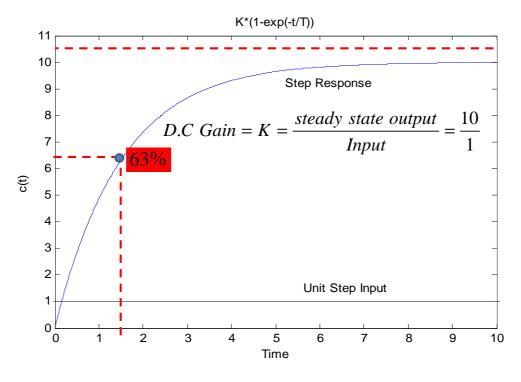
• When **t=T**

$$c(t) = K(1 - e^{-1}) = 0.632K$$

Step Response of 1st Order System

• If K=10 and T=1.5s then

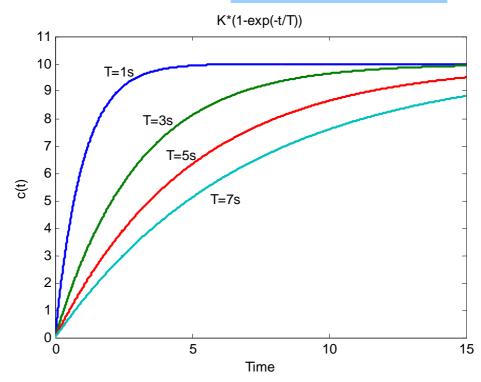
$$c(t) = K\left(1 - e^{-t/T}\right)$$



Step Response of 1st Order System

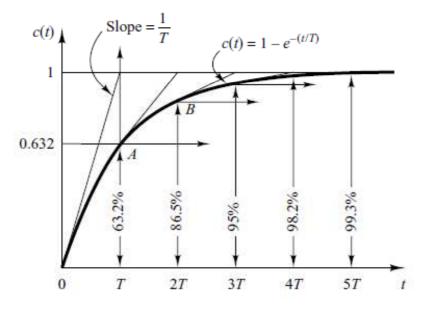
• If K=10 and T=1, 3, 5, 7

$$c(t) = K\left(1 - e^{-t/T}\right)$$



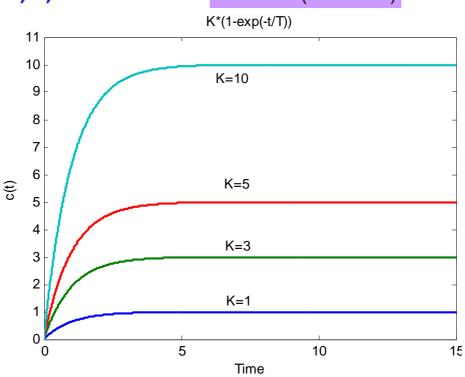
Step Response of 1st order System

• System takes five time constants to reach its final value.



Step Response of 1st Order System

 $c(t) = K\left(1 - e^{-t/T}\right)$



Example -1

Impulse response of a 1st order system is given below.

$$c(t) = 3e^{-0.5t}$$

• Find out

- Time constant T
- D.C Gain K
- Transfer Function
- Step Response

Example -1

- The Laplace Transform of Impulse response of a system is actually the transfer function of the system.
- Therefore taking Laplace Transform of the impulse response given by following equation.

$$c(t) = 3e^{-0.5t}$$

$$C(s) = \frac{3}{S+0.5} \times 1 = \frac{3}{S+0.5} \times \delta(s)$$

$$\frac{C(s)}{\delta(s)} = \frac{C(s)}{R(s)} = \frac{3}{S+0.5}$$

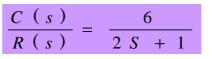
$$\frac{C(s)}{R(s)} = \frac{6}{2S+1}$$

Example -1

• Impulse response of a 1st order system is given below.

$$c(t) = 3e^{-0.5t}$$

- Find out
 - Time constant T=2
 - D.C Gain K=6
 - Transfer Function
 - Step Response



- Also Draw the Step response on your notebook

Example -1

• For step response integrate impulse response

$$c(t) = 3e^{-0.5t}$$

$$\int c(t)dt = 3\int e^{-0.5t}dt$$

$$c_s(t) = -6e^{-0.5t} + C$$

We can find out C if initial condition is known e.g. c_s(0)=0

$$0 = -6e^{-0.5 \times 0} + C$$

$$C = 6$$

$$c_s(t) = 6 - 6e^{-0.5t}$$

Example -1

• If initial Conditions are not known then partial fraction expansion is a better choice

$$\frac{C(s)}{R(s)} = \frac{6}{2S+1}$$

since $R(s)$ is a step input, $R(s) = \frac{1}{s}$
$$C(s) = \frac{6}{s(2S+1)}$$
$$\frac{6}{s(2S+1)} = \frac{A}{s} + \frac{B}{2s+1}$$
$$\frac{6}{s(2S+1)} = \frac{6}{s} - \frac{6}{s+0.5}$$
$$c(t) = 6 - 6e^{-0.5t}$$

Ramp Response of 1st Order System

• Consider the following 1st order system

$$R(s) \longrightarrow \frac{K}{Ts+1} \longrightarrow C(s)$$

$$R(s) = \frac{1}{s^2}$$

$$C(s) = \frac{K}{s^2(Ts+1)}$$

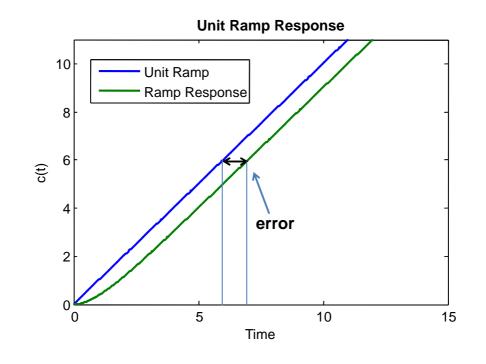
• The ramp response is given as

$$c(t) = K\left(t - T + Te^{-t/T}\right)$$

Ramp Response of 1st Order System

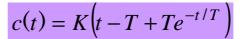
• If K=1 and T=1

$$c(t) = K\left(t - T + Te^{-t/T}\right)$$

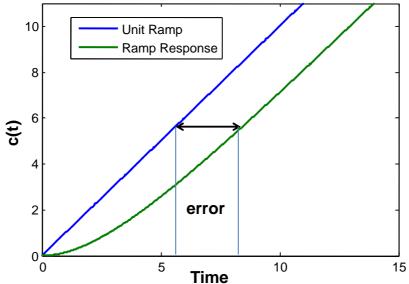


Ramp Response of 1st Order System

• If K=1 and T=3

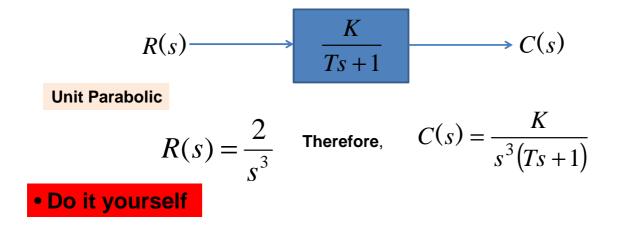


Unit Ramp Response



Parabolic Response of 1st Order System

• Consider the following 1st order system



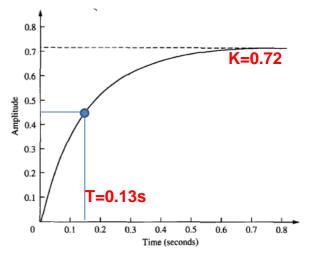
Practical Determination of Transfer Function of 1st Order Systems

• If we can identify *T* and *K* from laboratory testing we can obtain the transfer function of the system.

$$\frac{C(s)}{R(s)} = \frac{K}{Ts+1}$$

Practical Determination of Transfer Function of 1st Order Systems

- For example, assume the unit step response given in figure.
- From the response, we can measure the time constant, that is, the time for the amplitude to reach 63% of its final value.
- Since the final value is about 0.72 the time constant is evaluated where the curve reaches 0.63 x 0.72 = 0.45, or about 0.13 second.
- K is simply steady state value.



 Thus transfer function is obtained as:

C(s)	0.72	5.5
$\overline{R(s)}$	$-\frac{1}{0.13s+1}$	$\frac{1}{s+7.7}$

1st Order System with a Zero

$$\frac{C(s)}{R(s)} = \frac{K(1+\alpha s)}{Ts+1}$$

- Zero of the system lie at $-1/\alpha$ and pole at -1/T.
- Step response of the system would be:

$$C(s) = \frac{K(1 + \alpha s)}{s(Ts + 1)}$$
$$C(s) = \frac{K}{s} + \frac{K(\alpha - T)}{(Ts + 1)}$$
$$c(t) = K + \frac{K}{T}(\alpha - T)e^{-t/T}$$

1st Order System with & W/O Zero

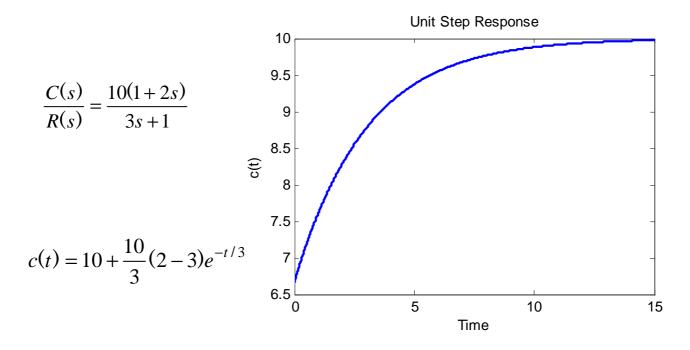
$$\frac{C(s)}{R(s)} = \frac{K}{Ts+1} \qquad \qquad \frac{C(s)}{R(s)} = \frac{K(1+\alpha s)}{Ts+1}$$
$$c(t) = K\left(1-e^{-t/T}\right) \qquad \qquad c(t) = K + \frac{K}{T}(\alpha - T)e^{-t/T}$$

• If $T > \alpha$ the response will be same

$$c(t) = K + \frac{K}{T}(-n)e^{-t/T}$$
$$c(t) = K\left(1 - \frac{Kn}{T}e^{-t/T}\right)$$

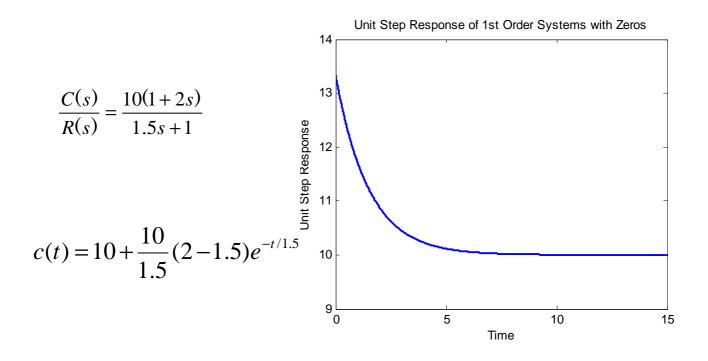
1st Order System with & W/O Zero

• If $T > \alpha$ the response of the system would look like

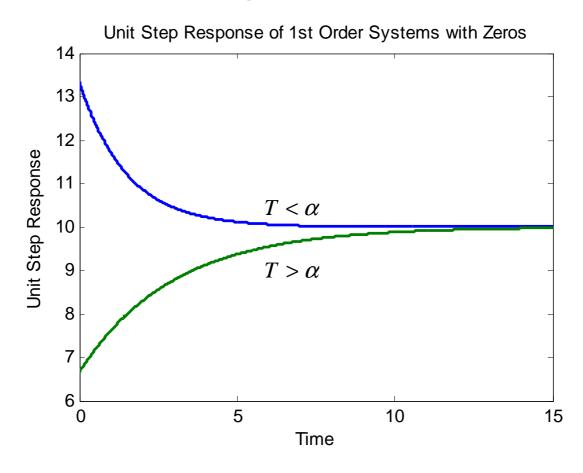


1st Order System with & W/O Zero

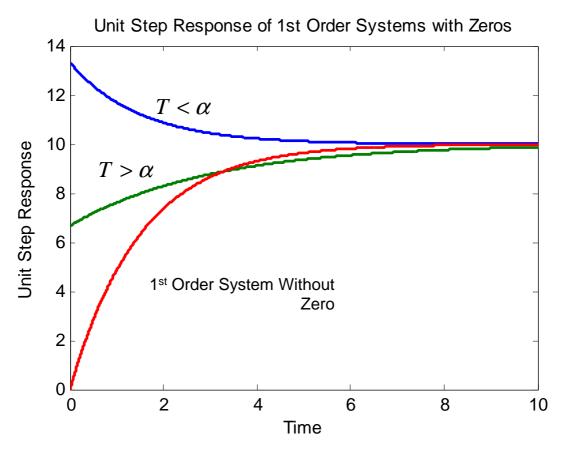
• If $T < \alpha$ the response of the system would look like



1st Order System with a Zero

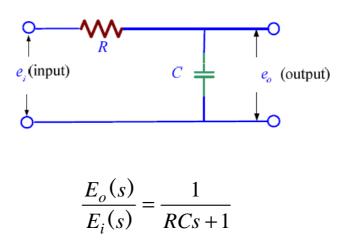


1st Order System with & W/O Zero



Examples of First Order Systems

• Electrical System



Examples of First Order Systems

Mechanical System

