
Lec. 2
Transfer Functions  & Block Diagrams

Dr. Basheer Mohammed Nasef

Transfer Functions  & Block Diagrams

� Transfer Function is the ratio of Laplace transform of
the output to the Laplace transform of the input.
Considering all initial conditions to zero.

PlantPlant y(t)u(t)

� Where     is the Laplace operator.
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� Then the transfer function G(S) of the plant is 
given as
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G(S)G(S) Y(S)U(S)

� By use of Laplace transform we can convert many
common functions into algebraic function of
complex variable s.

� For example
ωω =tsinℓ

Or

� Where s is a complex variable (complex
frequency) and is given as
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� Not only common function can be converted into
simple algebraic expressions but calculus
operations can also be converted into algebraic
expressions.

For example� For example
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� In general
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� Where is the initial condition of the system.
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• u is the input voltage applied at t=0

• y is the capacitor voltage

� If the capacitor is not already charged then y(0)=0.
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• The time domain integral becomes division 
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• The time domain integral becomes division 

by s in frequency domain.  
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• Consider the following ODE where y(t) is input of the

system and x(t) is the output.

• or
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• Taking the Laplace transform on either sides
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• Considering Initial conditions to zero in order to find the
transfer function of the system
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• Rearranging the above equation
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1. Find out the transfer function of the RC network shown in figure-1.
Assume that the capacitor is not initially charged.

Figure-1
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Figure-1
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2. u(t) and y(t) are the input and output respectively of a system
defined by following ODE. Determine the Transfer Function. Assume
there is no any energy stored in the system.

� In general

� Where x is the input of the system and y is the output
of the system.
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� When order of the denominator polynomial is greaterWhen order of the denominator polynomial is greater
than the numerator polynomial the transfer function
is said to be ‘proper’.

� Otherwise ‘improper’
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� Transfer function helps us to check

� The stability of the system

� Time domain and frequency domain characteristics of � Time domain and frequency domain characteristics of 

the system 

� Response of the system for any given input
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� There are several meanings of stability, in general
there are two kinds of stability definitions in
control system study.

� Absolute Stability

� Relative Stability
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� Roots of denominator polynomial of a transfer
function are called ‘poles’.

� And the roots of numerator polynomials of a transfer
function are called ‘zeros’.
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� Poles of the system are represented by ‘x’ and zeros of

the system are represented by ‘o’.

� System order is always equal to number of poles of
the transfer function.

� Following transfer function represents nth order plant.
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� Poles is also defined as “it is the frequency at which
system becomes infinite”. Hence the name pole
where field is infinite.

� And zero is the frequency at which system
becomes 0.
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� Consider the Transfer function calculated is.
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� The only pole of the system is
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� The poles and zeros of the system are plotted in s-
plane to check the stability of the system.
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� If all the poles of the system lie in left half plane the
system is said to be Stable.

� If any of the poles lie in right half plane the system is
said to be Unstable.

� If pole(s) lie on imaginary axis the system is said to be
Marginally Stable.
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� For example

� Then the only pole of the system lie at
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� Consider the following transfer functions.
� Determine whether the transfer function is proper or

improper

� Calculate the Poles and zeros of the system

� Determine the order of the system

� Draw the pole-zero map

� Determine the Stability of the system
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� The system is said to be stable if for any
bounded input the output of the system is also
bounded (BIBO).

� Thus the for any bounded input the output
either remain constant or decrease with time.either remain constant or decrease with time.
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� If for any bounded input the output is not bounded the
system is said to be unstable.
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� For example

3

1

)(

)(
)(1 +

==
ssU

sY
sG

3

1

)(

)(
)(2 −

==
ssU

sY
sG

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4
Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4
Pole-Zero Map

Real Axis

Im
ag

in
ar

y 
A

xi
s

stable
unstable



� For example

3

1

)(

)(
)(1 +

==
ssU

sY
sG

3

1

)(

)(
)(2 −

==
ssU

sY
sG

)()(

3

1

)(

)(
)(

3

11
1

1

tuety

ssU

sY
sG

t−

−−−

==
+

== ℓℓℓ

)()(

3

1

)(

)(
)(

3

11
2

1

tuety

ssU

sY
sG

t==
−

== −−−
ℓℓℓ

� For example
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exp(-3t)*u(t)
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� Whenever one or more than one poles are in RHP the
solution of dynamic equations contains increasing
exponential terms.

Such as .
te3

� Such as .

� That makes the response of the system unbounded and
hence the overall response of the system is unstable.
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Block DiagramBlock Diagram



� A Block Diagram is a shorthand pictorial representation

of the cause-and-effect (i/p & o/p) relationship of a
system.

� The interior of the rectangle representing the block
usually contains a description of or the name of theusually contains a description of or the name of the
element, or the symbol for the mathematical operation to
be performed on the input to yield the output.

� The arrows represent the direction of information or 
signal flow.
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dt

dx y

� The operations of addition and subtraction have a special
representation.

� The block becomes a small circle, called a summing point,
with the appropriate plus or minus sign associated with the
arrows entering the circle.

� The output is the algebraic sum of the inputs.

� Any number of inputs may enter a summing point.

� Some books put a cross in the circle.

35



� In order to have the same signal or variable be an
input to more than one block or summing point, a
Takeoff Point (Node) is used.

� This permits the signal to proceed unaltered along
several different paths to several destinations.several different paths to several destinations.
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� Consider the following equations in which x1, x2, x3, are

variables, and a1, a2 are general coefficients or mathematical

operators called Gains.
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� Consider the following equations in which x1, x2, x3, are

variables, and a1, a2 are general coefficients or mathematical

operators called Gains.
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� Draw the Block Diagrams of the following equations.
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• The control ratio is the closed loop transfer function of the
system.
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• The denominator of closed loop transfer function determines the
characteristic equation of the system.

• Which is usually determined as:
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� The block diagram of a practical control system is often
quite complicated.

� It may include several feedback or feedforward loops,
and multiple inputs.and multiple inputs.

� By means of systematic block diagram reduction, every
multiple loop linear feedback system may be reduced to
canonical form.
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Reduction Reduction TechniquesTechniques

2G1G
21GG

1. Combining blocks in cascade

1G
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2. Combining blocks in parallel (Feed Forward)
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Reduction Reduction TechniquesTechniques

3. Moving a summing point behind a block

G G

G
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4. Moving a summing point ahead of a block
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G

1

G G

G

1

5. Moving a pickoff point behind a block

Reduction Reduction TechniquesTechniques

6. Moving a pickoff point ahead of a block
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7. Eliminating a feedback loop
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8. Swap with two neighboring summing points
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• Combine all cascade block using rule-1

• Combine all parallel block using rule-2
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• Eliminate all minor feedback loops using rule-7

• After the elimination of minor feedback loop the block diagram is reduced to  
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• Again blocks are in cascade are removed using rule-1
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